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A detailed analysis of the topology of two-dimensional isothermal potential phase diagrams for
systems composed of three chemical elements is presented. Chemical potentials (or derived
properties as activities or partial pressures) of two independent components or their combina-
tions are used as coordinates of such diagrams. The chemical potentials of other species are
constant at the given temperature (i.e., stoichiometric, single-species condensed phases, or com-
ponents of a multicomponent phase of fixed composition). It was shown that only invariant point
can change the topology of the diagram. A method for the determination of invariant points is
proposed. The set of invariant points is divided into four classes, and each class is demonstrated
by a practical example.

1. Introduction

Phase diagrams are usually used for the graphic repre-
sentation of equilibrium phase relations in heterogeneous
systems, as a function of intensive variables. The diagrams
can often be constructed two-dimensionally. Any pair of
intensive variables (e.g., temperature-pressure, temperature-
composition, pressure-composition, chemical potential [par-
tial pressure]-chemical potential [partial pressure]) can be
chosen as coordinates. The diagrams at constant tempera-
ture, the coordinates of which are chemical potentials (�i) or
combinations of chemical potentials (�ij � ��i − ��j,
where � and � are arbitrary real numbers), or derived vari-
ables such as activities (ai) or partial pressures (pi) are called
isothermal potential phase diagrams (PPDs) [1998Hil]. As
typical examples of PPDs for systems composed of three
elements (A-B-C), the Kellogg phase stability diagrams or
chemical potential diagrams proposed by Yokokawa and
colleagues [1989Yok, 1999Yok] can be given. The former
describe the stability of single-species condensed phases in
the gaseous atmosphere as a function of log pA and log pB
[1981Gas, 1991Pel], whereas the latter use log(aA/aB) and
log pc as coordinates.

The construction and application of PPDs have been well
described in the literature [1986Bal, 1988Rus, 1990Bal,
1990Wan, 1993Lei]. However, the classification and topol-
ogy of PPDs have almost never been discussed. In this
work, we use the definition that two PPDs have different
topology if they have either a different number of isother-
mal invariant points or a different phase composition of
some isothermal invariant points. The definition of topology
is somewhat ambiguous in the literature. [1990Bal] has
studied the topology of intersecting domains in two-metal
(i.e., four elements) PPDs and has introduced two different

types of topologies, “X” and “Y.” [1991Pel] has classified
three-element PPDs and a p-T diagram of pure substance
into the same group of diagrams in which, for example, a
three-phase point in an isothermal PPD corresponds with
the triple point in a p-T diagram of a pure substance or a
two-phase line in a PPD corresponds with a two-phase satu-
rated curve in p-T diagram. [1981Gas] has also discussed
three-element PPDs and mentioned the existence of a spe-
cial type of isothermal invariant point at which four stoi-
chiometric condensed substances are in equilibrium at a
particular temperature. An example of such a type of iso-
thermal invariant point for an Fe-O-S system [FeS2, Fe3O4,
Fe2O3, and Fe2(SO4)3] has been given by [1988Rus].

In this article, a detailed topology analysis of isothermal
PPDs for systems composed of three chemical elements is
presented. Several substances of fixed chemical potential
(i.e., stoichiometric single-species condensed phases or
components of a multicomponent phase of fixed composi-
tion) are considered. Chemical potentials (or activities or
partial pressures) of two independent components, X1 and
X2 (e.g., components of a gaseous phase being in equilib-
rium with stoichiometric single-species condensed phases)
or their combinations are used as coordinates of such PPDs.

2. Equilibrium Conditions

Let us consider a closed system in which there is no work
involved other than that related to volume change (pressure
− volume work). The determination of the chemical equi-
librium of such a system at constant temperature T and
pressure p is equivalent to finding a global minimum point
of the total Gibbs energy G on a set of points n � (n1, n2,
. . . , nN) satisfying the material balance equations. The
problem can be conceived in the following manner:

min G; G = �
i=1

N

�i ni (Eq 1)
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�
i=1

N

aji ni = bj 1 � j � M; ni � 0 1 � i � N (Eq 2)

where N is the number of species, ni the number of moles of
the ith species, M is the number of chemical elements the
system is composed of, and �i is the chemical potential of
the ith species in the phase in which the ith species is con-
sidered. Matrix A � {aji} is the matrix of constitution co-
efficients (or the formula matrix), where aji is the number of
atoms of the jth element in a molecule (or in a formula unit)
of the ith species and bj is the total number of moles of the
jth element in the system. We shall always assume N > M
and rank(A) � M. If rank(A) < M, then the linearly depen-
dent rows of the matrix A are removed and a new value of
M, M � rank(A), is considered.

The following relations hold for the respective chemical
potentials:

�i
g = �i

o,g�T� + RT ln
pi

pst
(Eq 3)

�i
c = �i

o,c�T� + RT ln ai
c (Eq 4)

where the superscripts g, c, and o stand for gaseous phase,
condensed phase, and standard state, respectively. Symbol
pi represents partial pressure of the ith gaseous species, and
pst is standard pressure. The pressure dependence of �o,c

i is
neglected. The activity ac

i is equal to unity for a single-
species condensed phase or, in general, it is equal to a
specific value if the ith species is a component of a multi-
component phase. Values of �o

i (T) can be calculated from
the standard thermodynamic functions of pure substances
given in many data collections [1991Kna, 1993Bar,
1998Cha].

It follows from the theory of mathematical programming
[1976Dan] that the following Kuhn-Tucker conditions must
be satisfied in equilibrium [1982Smi]:

if ni � 0 then �i − �
k=1

M

aki �k = 0 (Eq 5)

if ni � 0 then �i − �
k=1

M

aki �k � 0 (Eq 6)

where {�k} are unknown Lagrangian multipliers. Because
all substances have fixed chemical potentials, the total G is
a linear function of molar numbers. Consequently, the ma-
terial balance equations An � b, the inequalities n � 0, and
Kuhn-Tucker conditions Eq 5 and 6 are in this case not only
necessary but also sufficient equilibrium conditions.

3. Gibbs Phase Rule

The phase rule introduced by Gibbs allows the determi-
nation of the number of independently adjustable intensive
variables in a system where F phases are in equilibrium.

This number is called the number of degrees of freedom (f)
and is given as a difference between the total number of
independent intensive variables that are necessary for the
unambiguous determination of the system and the number
of independent equilibrium conditions.

Let us consider an equilibrium system containing Fc stoi-
chiometric single-species condensed phases. Temperature is
the only intensive variable in such an equilibrium system
(influence of pressure is neglected), and therefore f � 1 – R,
where R (R � 1) is the number of independent chemical
reactions describing the chemical change of such a system.
The relation R � Fc – rank(A) follows from the Gibbs
stoichiometric rule. Therefore, for a considered system of
stoichiometric single-species condensed phases the Gibbs
phase rule assumes the form f � M + 1 – Fc. Obviously, the
maximum number of single-species condensed phases is M
+ 1. Such an equilibrium state (f � 0) can be achieved only
for a particular value of temperature (i.e., the invariant tem-
perature Tinv). The point corresponding to this state is an
invariant point. The denotation isothermal invariant point is
used for isolated points in isothermal PPDs at which only M
single-species phases are obviously in equilibrium.

4. Calculation of Invariant Points

Let us choose any subset of M + 1 phases from the total
number N of single-species condensed phases where
rank(AM+1) � M and AM+1 is a matrix of constitution co-
efficients of these M + 1 species. Let us further assume,
without loss of generality, that the sequence numbers of
these species are 1, 2, . . . , M + 1. It follows from Eq 3 and
4 that necessary and sufficient conditions for an invariant
point have the form of the following set of M + 1 equations:

�i�Tinv� − �
k=1

M

aki �k = 0 i = 1, 2, . . . , M + 1 (Eq 7)

and the following set of inequalities:

�i�Tinv� − �
k=1

M

aki �k � 0 i = M + 2, . . . , N (Eq 8)

where M + 1 unknowns Tinv, �1, . . . , �M that were calcu-
lated from Eq 7 must satisfy the inequalities of Eq 8. A
hypothetical case f < 0 is not accepted, and therefore the
inequality “�” in Eq 6 is replaced by inequality “>” in Eq
8. Nevertheless, for a particular choice of the right-hand
side of material balance equations An � b, one or more
values of ni, i � 1, . . . , M + 1 are allowed to be equal zero.
Because rank(AM+1) � M, there exists only one indepen-
dent chemical reaction between considered single-species
phases (generally speaking, in some of the stoichiometric
coefficients of such a reaction, vi, i � 1, . . . , M + 1 can
indeed be zero). Let us multiply the ith equation in Eq 7 by
vi, and let us make a sum of them. It follows from relations
�ajivi � 0, j � 1, . . . , M that the temperature of the
invariant point Tinv must satisfy the equation �	i�i(Tinv) �
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Gr(Tinv) � 0. The values of Lagrangian multipliers are
determined from the set of M linear equations because fix-
ing Tinv makes just one equation of the set in Eq 7 linearly
dependent (rank AM+1 � M). the chemical potentials of
both independent components X1 and X2 (coordinates of
invariant point in a PPD) being in equilibrium with the M +
1 phases can be easily determined from two separate equa-
tions:

�i�Tinv� = �
k=1

M

aki �k i = X1, X2 (Eq 9)

The invariant point is represented by a (M + 1)-
component vector, the components of which are equal to the
sequence numbers of considered single-species phases. The
total number of such vectors amounts to C(M + 1, Fc),
where C is a symbol for a combinatorial number. These
vectors can be divided into four classes:

• Rank(AM+1) < M, thus, a set of equations in Eq 7 has no
solution because there are at least two independent
chemical reactions describing chemical changes in the
system (f < 0)

• Rank(AM+1) � M, but the equation 
Gr(T) � 0 has no
physical solution

• Rank(AM+1) � M, and the equation 
Gr(T) � 0 has a
solution in the considered temperature interval, but the
inequalities in Eq 8 are not valid, and in such a case the
solution is said to be unstable

• Invariant points

5. Potential Phase Diagrams for M = 3

Two essential characteristics of invariant points will be
shown in this section:

• An invariant point originates from merging two (or
more) isothermal invariant points and vanishes by an
inverse process splitting into two (or more) isothermal
invariant points.

• Nothing but the invariant point changes the topology of
a PPD. A new phase originates only at an invariant
point (an inverse theorem does not hold, i.e., each in-
variant point is not associated with the origin of a new
phase).

Consider the Fe-O-S system [Fe, Fe3O4, FeO, FeS2,
Fe2(SO4)3, FeSO4, Fe2O3, FeS, O2(g), S2(g)] containing
eight single-species solid phases as an example. Species
O2(g) and S2(g) were chosen as two independent compo-
nents. The set � has C(4,8) � 70 vectors where one of them
{Fe, FeO, Fe2O3, Fe3O4} belongs to the first class (rank(A4)
� 2), 12 of them belong to the second class (temperature
interval 300-1100 K), 55 of them belong to the third class,
and only two represent invariant points: {Fe2O3, Fe3O4,
FeS2, FeSO4; T � 787 K} and {Fe, FeO, FeS, Fe3O4; T �
843 K}. The necessary thermodynamic data were taken
from [1991Kna].

Let us discuss the first invariant point. A part of the
phase stability diagram at a temperature of 600 K is shown
in Fig. 1(a). Three single-species phases, FeS2, Fe3O4, and

Fe2O3, coexist in the isothermal invariant point denoted as
A, and three single-species phases, FeS2, Fe2O3 and FeSO4,
coexist in the isothermal invariant point denoted as B. Both
points have two common phases, FeS2 and Fe2O3 (the third
phase is different). The common phases coexist on the line
connecting both points. A phase stability diagram at 900 K
is given in Fig. 1(b). Three phases, FeS2, Fe3O4, and FeSO4,
coexist in the isothermal invariant point C, and three phases,
Fe3O4, Fe2O3, and FeSO4, coexist in the isothermal invari-
ant point D where Fe3O4 and FeSO4 represent the common
pair. Obviously, there exists a temperature Tinv between 600

Fig. 1 Phase stability diagram of the system Fe-O-S at (a) 600 K
and (b) 900 K
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and 900 K for which the common pair at 600 K and the
common pair at 900 K are in equilibrium state (i.e., points
A, B, C, and D merge into one point). The temperature Tinv
was calculated from equation 
Gr(T) � 0 for chemical
reaction:

FeS2(s) + 20 Fe2O3(s) � 13 Fe3O4(s) + 2 FeSO4(s) (Eq R1)

As mentioned above, Tinv � 787 K. The invariant point
changes the topology of the isothermal diagram (i.e., the
number or composition of isothermal invariant points), but
in this case it is not connected with the occurrence of a new
phase. The second invariant point will be mentioned later.

Let us consider a hypothetical system composed of three
chemical elements, A, B, and C. Let us consider, without
loss of generality, B(g) and C(g) as two independent species
in the gaseous phase, and log pB and log pC as coordinates
of the isothermal PPD. Furthermore, the element A is sup-
posed to be contained in all single-species condensed

phases, for example, A, AB, AC, ABC, A2BC, A3BC, and
AB3C2.

The set of invariant points for M � 3 can be divided into
the four basic classes:

Class 1. Four single-species condensed phases, A, AB,
AC, and ABC (Fig. 2), where the chemical change of the
system is described by the reaction:

AB(s) + AC(s) � ABC(s) + A(s) (Eq R2)

Figure 2(a) to (c) represents three isothermal PPDs cor-
responding to three different values of 
Gr for Eq R2: 
Gr
> 0 (a), 
Gr � 0 (b), and 
Gr < 0 (c), respectively. The
invariant point (Fig. 2b) changes the diagram topology (iso-
thermal invariant points in Fig. 2a, c, have different phase
compositions), but the number of phases remains constant.
Two species on the left-hand side and two species on the
right-hand side are involved in the given chemical reaction.
Therefore, the invariant point is said to belong to the class

Fig. 2 Change of topology in the invariant point 2 + 2

Fig. 3 Change of topology in the invariant point 3 + 1
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(2 + 2). The first invariant point in the system Fe-O-S (see
Eq R1) can be given as a real example.

Class 2. Four single-species condensed phases, A, AB,
AC, and A3BC (Fig. 3), are considered. The chemical re-
action has the following form:

A(s) + AB(s) + AC(s) � A3BC(s) (Eq R3)

In this case, the invariant point (Fig. 3b) splits up into
three separate isothermal invariant points. The number of
phases is changed and a new “closed” phase stability field
containing A3BC starts to develop or disappears according
to the sign of 
Gr for the reaction (R3). The chemical re-
action (R3) has three species on the left side and one species
on the right side. Accordingly, such an invariant point be-
longs to the class (3 + 1). As an example, the system Cu-
O-S with an invariant point {Cu2O, Cu2S, CuSO4, Cu2SO4;
T � 831 K} can be presented. The relevant reaction to that
invariant point has the form:

4 Cu2O(s) + 2 Cu(s) + 8 CuSO4(s) � 9 Cu2SO4(s) (Eq R4)

Class 3. Four single-species condensed phases, A, AB,
AC, and A2BC (Fig. 4), where the chemical reaction as-
sumes the form:

AB(s) + AC(s) � A2BC(s) (Eq R5)

that is, one species (A) does not participate in the reaction
in Eq R5. If 
Gr � 0, three phases, AC, AB, and A2BC, are
in equilibrium on the two-phase line separating AC and AB
(Fig. 4b). The invariant point changes the number of phases,
and a change of temperature causes an “open” phase stabil-
ity field of A2BC to be formed or disappear according to the
sign of 
Gr for the reaction in Eq R5. In this case, the
invariant point belongs to the class (2 + 1). The invariant
point {Ti2O3, Na2TiO3, Ni2Ti2O5, Ni2Ti3O7; T � 1075 K}
with the reaction:

Na2TiO3(s) + Na2Ti3O7(s) � 2 Na2Ti2O5(s) (Eq R6)

is an example of such a change of PPD topology. Note that

Fig. 4 Change of topology in the invariant point 2 + 1

Fig. 5 Change of topology in the invariant point 1 + 1
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the invariant point {Fe, FeO, FeS, Fe3O4} in the above-
mentioned Fe-O-S system with the reaction:

Fe(s) + Fe3O4 (s) � 4FeO(s) (Eq R7)

belongs to this class.
Class 4. The last class is denoted (1 + 1). From the four

considered single-species condensed phases, A, AB, AC,
and A2C2, only two participate in the corresponding chemi-
cal reaction:

2 AC(s) � A2C2(s) (Eq R8)

In this case (Fig. 5), the number of phases is retained, and
only the composition of the isothermal invariant point is
changed (an analogous situation to that in the class [2 + 2]).
The discontinuity of the diagram is significant because the
entire AC area is converted into the A2C2 area. Three phases
are in equilibrium on the boundaries A-AC(A2C2) and AB-
AC(A2C2), whereas two phases, AC and A2C2, coexist in
the AC(A2C2) stability field. Perhaps a more typical repre-
sentative of this class is a set of four single-species con-
densed phases, A(s), AB(s), AC(s1) and AC(s2), containing
two different modifications of a solid substance AC. Evi-
dently only one reaction:

AC(s1) � AC(s2) (Eq R9)

takes place in such a subsystem.

6. Conclusions

The determination of invariant points allows the study of
the topology of PPDs over a wide range of temperatures.
Even if the number of invariant points can be generally high—
i.e., � C(M + 1, Fc)—the real number is, by experience,
significantly less (see the results for the Fe-O-S system).

In this study, we have examined in detail the systems
with three elements (M � 3). We have found four classes of
invariant points, which are described in the previous section
and correspond with the stoichiometry of the corresponding
chemical reaction: 2 + 2 (two species on the left-hand side
and two species on the right-hand side of the chemical re-
action), 3 + 1, 2 + 1, and 1 + 1. Hence, the knowledge of the
reaction stoichiometry enables the identification of the rel-
evant class of the invariant point.
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